

WagonSIM – Simulation tool for Optimisation of Wagon-based Production Schemes

Dirk Bruckmann, Albert Mancera

ViWaS – Viable Wagonload Production Schemes Final conference

Lucerne, October, 23rd, 2015

The status of SWL in Europe

SWL networks in Europe

Modal Split of SWL in Switzerland

Infrastructure bottlenecks in Switzerland

Optimisation approaches for Single Wagonload networks

SWL production schemes

Optimisation approaches for SWL

- Optimisation of the train operation on the lines (between the shunting points)
- Optimisation of the shunting processes
- Optimisation of the network structure

Optimisation approaches and simulation requirements

Optimization goals for SWL networks

- Increase of the utilization of trains to reduce the number of trains,
- Stabilization of the train occupancy,
- Reduction of the deviation of wagons,
- Enhancement of the supplied services by shorter transport times.

Simulation and Network Optimisation tool requirements

- Covering the production schemes of SWL,
- Including maximum train occupancy (weight and length),
- Dealing with the transport requirements (closing time and latest time of arrival in the Satellites),
- Covering time requirements for shunting processes
- Optimization of wagon routing depending on the train occupancy.

Methodological gap in (freight) railway simulation

Macroscopic approaches

Conventional transport planning software, dealing with O-D matrices and an aggregated infrastructure network on line basis.

Simulation almost on a daily basis.

Microscopic approaches

Railway Simulation, dealing with detailed infrastructure data and concrete schedules, but not considering the demand structure. Simulation on a basis of seconds

WagonSim as mesoscopicic approach

Modeling the SWL network on basis of wagons. Dealing with a generalized infrastructure network, considering the network structure and capacity restraint. Modeling a concrete timetable. Considering shunting times etc.

MATSim as agent-based simulation software

WagonSIM is developed on basis of the MATSim system:

- Fast Dynamic and Agent-Based Traffic Simulation
 Simulate whole days within minutes
- Private and Public Traffic
 Both private cars and transit traffic can be simulated
- Supports Large Scenarios
 MATSim can simulate millions of agents or huge, detailed networks
- Versatile Analyses and Simulation Output
 E.g. compare simulated data to real-world counting stations
- Modular Approach
 Easily extended with your own algorithms
- Interactive Visualizer
 See what each agent is doing during the simulation
- Open Source
 You get the Java Source Code, which runs on all major operating systems

Adaptions in MATSim to model WagonSIM

MATSim element	Representation in WagonSIM
Agent	Wagon with its weight and length
Activity plan	For each Wagon: Origin siding with earliest departure time -> destination siding with latest arrival time
Population of agents	Set of all wagons
Transport vehicles	Trains with their maximum length and weight
Schedule for vehicles (PT)	Train schedules (production network)

The two network layers: production scheme and infrastructure network

Wagons Activity plan

Routing on the schedule (and the production scheme)

WagonSIM Schedule

Train network including the production scheme

Routing on the infrastructure network

Production scheme (commercial stops)

The production scheme

Elements of the production scheme

- Nodes representing the commercial stops to pick up and set down wagons.
- Edges representing the trains with their commercial stops

The infrastructure model – including attributes and capacity restraints

Elements of the infrastructure network

- Edges with their length, maximum speed and maximum capacity.
- Nodes with a maximum capacity for the number of shunted wagons and minimum times to set up and drop down wagons.
- Interconnection loops at the nodes with a minimum time to change between different trains.

The WagonSIM Schedule

- Merged from the production scheme and the infrastructure network
- All railway lines in Switzerland with SWL are integrated in the model

WagonSim video

Case study - Concept

Six regions and/or commercial routes have been selected

- Identification of all trains serving the selected shunting yard and regional shunting points
- Substitution for a new service: 3 trains per day in each direction, none intermediate stops, coupling and decoupling activities allowed.
- New schedule includes these changes and keeps original services in the rest of the network

Case study - Data preparation

Friday, October 23rd 2015 MSc. Albert Mancera Sugrañes

Case study - Simulation and results (1)

5 KPIs:

- train-kilometers;
- train-hours;
- wagon-kilometers;
- wagon-hours, and
- ton-kilometers

Wagons counted as

- Transported wagons, or
- Stuck wagons

Stuck	Transported wagons	Train-	Train-	Wagon-	Wagon-	Tonne-
wagons		kilometers	hours	kilometers	hours	kilometers
22.59%	97.41%	102896	2463	401519	68378	15,546,472

Case study - Simulation and results (2)

Local modifications simulation results

	LM 1	LM 2	LM 3	LM 4	LM 5	LM 6
Stuck wagons	-5.40%	4.32%	1.73%	2.70%	-4.06%	1.19%
Transported wagons	0.02%	0.03%	-0.15%	0.03%	0.55%	0.03%
Train- kilometers	0.17%	-3.25%	-0.13%	1.88%	-5.95%	0.18%
Train- hours	-0.13%	-1.08%	0.61%	1.68%	-7.22%	0.08%
Wagon- kilometers	-3.95%	-11.42%	-4.88%	-4.27%	-0.91%	1.44%
Wagon- hours	-0.55%	0.00%	-2.26%	-0.12%	2.23%	-2.42%
Tonne- kilometers	-4.33%	-12.08%	-5.45%	-5.40%	-1.57%	0.60%

Conclusions

- WagonSIM is an scalable agent-based model time-table based freight network, if infrastructure and schedule data are provided.
- Case study in the Swiss SWL network is presented as illustration case for WagonSIM performance.
- Improvements on the current Swiss SWL production schemes are possible.
- WagonSIM is proved as a valid tool to study the current production schemes and find modifications that improve the performance.
- WagonSIM has a potential for further development.

Thank you for your attention!

Prof. Dirk Bruckmann

Rhein-Waal University of Applied Sciences + 49 2842 908 25 246 dirk.bruckmann@hsrw.eu

Albert Mancera MSc

ETH Zurich Institute for Transport Planning and Systems + 41 44 633 28 38 albert.mancera@ivt.baug.ethz.ch